viernes, 4 de septiembre de 2015

A finales de del sigo IX las revistas especializadas predecían la "electricidad gratuita" en un futuro cercano, pero aunque si bien es cierto que esto no se ha logrado, si han habido avances importantes en la producción de la energía eléctrica en estos años.

En un futuro las civilizaciones se verán forzadas, más que ahora, a buscar nuevas fuentes de energía para satisfacer sus crecientes demandas por recursos y con la tasa actual de consumo de combustibles fósiles estámos a décadas de que se acaben y se desencadene una crisis energética a nivel mundial si no se halla un sustituto efectivo que supla las necesidades de los consumidores.

fogon de gas

Cuando hablamos de nuevas energías, no nos referimos a nuevas fuentes de energía sino a nuevos métodos, tecnologías con las cuales podemos aprovechar más las fuentes de energía existentes.

A pesar de que pareciera que la tasa de desarrollo de nuevas tecnologías es lenta, la conciencia del publico en general y la presión sobre los gobiernos está creciendo rápidamente lo que está impulsando una mayor adopción de tecnologías más limpias.

Granjas eólicas aéreas

Granjas eólicas aéreas

El concepto desarrollado por la NASA implica a poner cometas como turbinas en el aire moviéndose a gran altura y enviando la energía generada a tierra por medio de nanotubos.

Las cometas podrían ser dirigibles en forma de embudo con una turbina en la parte trasera, o un globo con aspas que giran, un paracaídas, una cometa etc. Todas son ideas consideradas por la naciente industria de energías renovables.

Este concepto no requiere de grandes cantidades de espacio en tierra, ni son intensivas en mano de obra y no contamina. Los generadores podrían durar un año en el aire y luego ser bajados para su revisión o en caso de tormenta.

jueves, 12 de junio de 2014

energia quimica

energia quimica:es una manifestación más de la energía. En concreto,és uno de los aspectos de laenergía interna de un cuerpo y, aunque se en- cuentra siempre en la materia, sólo se nos muestra cuando se produce una alteración íntima de ésta.

En la actualidad, la energía química és la que mueve los automóviles, los buques y los aviones y, en general, millones de máquinas. Tanto la combus- tión del carbón, de la leña o del petróleo en las máquinas de vapor como la de los derivados del petróleo en el estrecho y reducido espacio de los cilin-
dros de un motor de explosión, constituyen reacciones químicas.

Es la energía almacenada dentro de los productos químicos. Los combustibles como la madera, el carbón, y el petróleo, son claros ejemplos de almacenamiento de energía en forma química. También es la energía producida en las reacciones químicas.

Ejemplo de transformación de la energía: En los fuegos artificiales, la energía química se transforma en energía térmica, luminosa, sonora y de movimiento.
fuentes de energia quimica
COMBUSTIBLES FÓSILES

Los combustibles fósiles son las principales fuentes de energía, la cual se produce mediante combustión. A este gran grupo pertenecen el petróleo, el carbón mineral y el gas natural. Los combustibles fósiles proceden de la descomposición de restos vegetales y otros organismos vivos.

Carbón y sus derivados

Es el primer combustible fósil usado por el hombre. El contenido principal de este sólido es carbono, que va desde un 50% en la turba, hasta un 90% en la hulla. Posee un poder calorífico alto, de aproximadamente 7000 kcal/kg.
Tomado de: “IES La Llitera – Huesca” (http://iestamar.educa.aragon.es/tecnologia/bachillerato/Energia%20Termica/Combusibles.htm)

Es la principal fuente de combustible usada para la generación de energía eléctrica.

Petróleo

Es un combustible natural líquido formado por una mezcla de hidrocarburos. Su poder calorífico es mayor que el del carbón: ronda los 10000 kcal/kg. Procede de la transformación de enormes masas de plancton, por acción de bacterias. El petróleo sin refinar es un líquido viscoso menos denso que el agua. Al estar líquido ofrece ventajas sobre la hulla, con respecto al transporte.

Sin embargo, el petróleo crudo carece de utilidad si no es refinado. Mediante este proceso, se calienta el petróleo crudo y se coloca en torres de fraccionamiento, donde se van recogiendo los distintos compuestos volátiles que se generan a partir del petróleo caliente. Entre esos productos encontramos el GLP (gas licuado de petróleo), gasolina, querosene, aceites, etc.


Mi

lunes, 9 de junio de 2014

ENERGIA NUCLEAR

ENERGIA NUCLEAR : La energía nuclear o energía atómica es la energía que se libera espontánea o artificialmente en las reacciones nucleares. Sin embargo, este término engloba otro significado, el aprovechamiento de dicha energía para otros fines, tales como la obtención de energía eléctrica, térmica y mecánica a partir de reacciones atómicas, y su aplicación, bien sea con fines pacíficos o bélicos.1 Así, es común referirse a la energía nuclear no solo como el resultado de una reacción sino como un concepto más amplio que incluye los conocimientos y técnicas que permiten la utilización de esta energía por parte del ser humano.


Estas reacciones se dan en los núcleos de algunos isótopos de ciertos elementos químicos (radioisótopos), siendo la más conocida la fisión del uranio-235 (235U), con la que funcionan los reactores nucleares, y la más habitual en la naturaleza, en el interior de las estrellas, la fusión del par deuterio-tritio (2H-3H). Sin embargo, para producir este tipo de energía aprovechando reacciones nucleares pueden ser utilizados muchos otros isótopos de varios elementos químicos, como el torio-232, el plutonio-239, el estroncio-90 o el polonio-210 (232Th, 239Pu, 90Sr, 210Po; respectivamente).



Existen varias disciplinas y/o técnicas que usan de base la energía nuclear y van desde la generación de electricidad en las centrales nucleares hasta las técnicas de análisis de datación arqueológica (arqueometría nuclear), la medicina nuclear usada en los hospitales, etc.

Los sistemas más investigados y trabajados para la obtención de energía aprovechable a partir de la energía nuclear de forma masiva son la fisión nuclear y la fusión nuclear. La energía nuclear puede transformarse de forma descontrolada, dando lugar al armamento nuclear; o controlada en reactores nucleares en los que se produce energía eléctrica, energía mecánica o energía térmica. Tanto los materiales usados como el diseño de las instalaciones son completamente diferentes en cada caso.

Otra técnica, empleada principalmente en pilas de mucha duración para sistemas que requieren poco consumo eléctrico, es la utilización de generadores termoeléctricos de radioisótopos (GTR, o RTG en inglés), en los que se aprovechan los distintos modos de desintegración para generar electricidad en sistemas de termopares a partir del calor transferido por una fuente radiactiva.



Las reacciones nucleares:

Henri Becquerel.
En 1896 Henri Becquerel descubrió que algunos elementos químicos emitían radiaciones.3 Tanto él como Marie Curie y otros estudiaron sus propiedades, descubriendo que estas radiaciones eran diferentes de los ya conocidos Rayos X y que poseían propiedades distintas, denominando a los tres tipos que consiguieron descubrir alfa, beta y gamma.


Pronto se vio que todas ellas provenían del núcleo atómico que describió Rutherford en 1911.

Con el descubrimiento del neutrino, partícula descrita teóricamente en 1930 por Pauli pero no detectada hasta 1956 por Clyde Cowan y sus colaboradores, se pudo explicar la radiación beta.

En 1932 James Chadwick descubrió la existencia del neutrón que Wolfgang Pauli había predicho en 1930, e inmediatamente después Enrico Fermi descubrió que ciertas radiaciones emitidas en fenómenos no muy comunes de desintegración eran en realidad estos neutrones.

Durante los años 1930, Enrico Fermi y sus colaboradores bombardearon con neutrones más de 60 elementos, entre ellos 235U, produciendo las primeras fisiones nucleares artificiales. En 1938, en Alemania, Lise Meitner, Otto Hahn y Fritz Strassmann verificaron los experimentos de Fermi y en 1939 demostraron que parte de los productos que aparecían al llevar a cabo estos experimentos con uranio eran núcleos de bario. Muy pronto llegaron a la conclusión de que eran resultado de la división de los núcleos del uranio. Se había llevado a cabo el descubrimiento de la fisión.

En Francia, Joliot Curie descubrió que además del bario, se emitían neutrones secundarios en esa reacción, haciendo factible la reacción en cadena.

También en 1932 Mark Oliphant teorizó sobre la fusión de núcleos ligeros (de hidrógeno), describiendo poco después Hans Bethe el funcionamiento de las estrellas basándose en este mecanismo.




ENERGIA GEOTERMICA

energia geotermica:La energía geotérmica es aquella energía que puede obtenerse mediante el aprovechamiento del calor del interior de la Tierra.

El término “geotérmico” viene del griego geo (‘Tierra’), y thermos (‘calor’); literalmente ‘calor de la Tierra’. Este calor interno calienta hasta las capas de agua más profundas: al ascender, el agua caliente o el vapor producen manifestaciones, como los géiseres o las fuentes termales, utilizadas para calefacción desde la época de los romanos. Actualmente, el progreso en los métodos de perforación y bombeo permiten explotar la energía geotérmica en numerosos lugares del mundo.




Tipos de yacimientos geotérmicos

Esquema de las fuentes de energía geotérmicas.
Puede considerarse que hay dos tipos de yacimientos geotérmicos, que se podrían llamar:

De agua caliente
Secos

Yacimientos de agua caliente

Estos yacimientos pueden formar una fuente o ser subterráneos, contenidos en un acuífero.

Los que forman fuentes, se aprovechan desde tiempos muy antiguos como baños termales. En principio podrían aprovecharse enfriando el agua antes de utilizarla, pero suelen tener caudales relativamente reducidos.

En cuanto a los subterráneos, yacimientos de aguas termales muy calientes a poca o media profundidad, sirven para aprovechar el calor del interior de la tierra. El agua caliente o el vapor pueden fluir naturalmente, por bombeo o por impulsos de flujos de agua y de vapor. El método a elegir depende del que en cada caso sea económicamente rentable.

En la mayoría de los casos la explotación debe hacerse con dos pozos (o un número par de pozos), de modo que por uno se obtiene el agua caliente y por otro se vuelve a inyectar en el acuífero, tras haber enfriado el caudal obtenido. Las ventajas de este sistema son múltiples:

Hay menos probabilidades de agotar el yacimiento térmico, puesto que el agua reinyectada contiene todavía una importante cantidad de energía térmica.
Tampoco se agota el agua del yacimiento, puesto que la cantidad total se mantiene.

Las posibles sales o emisiones de gases disueltos en el agua no se manifiestan al circular en circuito cerrado por las conducciones, lo que evita contaminaciones.

Ventajas

Es una fuente que disminuye la dependencia energética de los combustibles fósiles y de otros recursos no renovables.
Los residuos que produce son mínimos y ocasionan menor impacto ambiental que los originados por el petróleo y el carbón.
Sistema de gran ahorro, tanto económico como energético.
No genera ruidos exteriores.
Los recursos geotérmicos son mayores que los recursos de carbón, petróleo, gas natural y uranio combinados.[cita requerida]
No está sujeta a precios internacionales, sino que siempre puede mantenerse a precios nacionales o locales.
El área de terreno requerido por las plantas geotérmicas por megavatio es menor que otro tipo de plantas. No requiere construcción de represas, ni tala de bosques.
La emisión de CO2, con aumento del efecto invernadero, es inferior al que se emitiría para obtener la misma energía por combustión, y puede llegar a ser nula cuando se reinyecta el agua, haciéndola circular en circuito cerrado por el exterior.


Desventajas

En yacimientos secos se han producido a veces microseísmos como resultado del enfriamiento brusco de las piedras calientes, y su consiguiente fisuración.
Como se ha dicho anteriormente, no es una energía inagotable.
Las desventajas que vienen a continuación hacen referencia exclusivamente a la energía geotérmica que no se utiliza con reinyección, y la que no es de baja entalpía doméstica (climatización geotérmica).
En ciertos casos emisión de ácido sulfhídrico que se detecta por su olor a huevo podrido, pero que en grandes cantidades no se percibe y es letal.
Contaminación de aguas próximas con sustancias como arsénico, amoníaco, etc.
Contaminación térmica.
Deterioro del paisaje.
No se puede transportar (como energía primaria), salvo que se haga con un intercambiador y un caloportador distinto del de las aguas del acuífero.

No está disponible más que en determinados lugares, salvo la que se emplea en la bomba de climatización geotérmica, que se puede utilizar en cualquier lugar de la Tierra.



jueves, 5 de junio de 2014

LA ENERGIA MAREOMOTRIZ


LA ENERGIA MAREOMOTRIZ:La energía mareomotriz es la que se obtiene aprovechando las mareas: mediante su empalme a un alternador se puede utilizar el sistema para la generación de electricidad, transformando así la energía mareomotriz en energía eléctrica, una forma energética más segura y aprovechable. Es un tipo de energía renovable, en tanto que la fuente de energía primaria no se agota por su explotación, y es limpia ya que en la transformación energética no se producen subproductos contaminantes gaseosos, líquidos o sólidos. Sin embargo, la relación entre la cantidad de energía que se puede obtener con los medios actuales y el coste económico y ambiental de instalar los dispositivos para su proceso han impedido una penetración notable de este tipo de energía.


Otras formas de extraer energía del mar son: las olas (energía undimotriz), de la diferencia de temperatura entre la superficie y las aguas profundas del océano, el gradiente térmico oceánico; de la salinidad, de las corrientes marinas o la energía eólica marina.


En España, el Gobierno de Cantabria y el Instituto para la Diversificación y Ahorro Energético (IDAE) quieren crear un centro de i+d+i en la costa de Santoña. La planta podría atender al consumo doméstico anual de unos 2.500 hogares.

Métodos de generación
Los métodos de generación mediante energía de marea pueden clasificarse en estas tres:

Generador de la corriente de marea
Los generadores de corriente de marea Tidal Stream Generators (o TSG por sus iniciales inglés) hacen uso de la energía cinética del agua en movimiento a las turbinas de la energía, de manera similar al viento (aire en movimiento) que utilizan las turbinas eólicas. Este método está ganando popularidad debido a costos más bajos y a un menor impacto ecológico en comparación con las presas de marea, ya que esto ocasiona que el agua suba 10 mt. a nivel del mar sobre lo normal.


Energía mareomotriz dinámica
La energía mareomotriz dinámica (Dynamic tidal power o DTP) es una tecnología de generación teórica que explota la interacción entre las energías cinética y potencial en las corrientes de marea. Se propone que las presas muy largas (por ejemplo: 30 a 50 km de longitud) se construyan desde las costas hacia afuera en el mar o el océano, sin encerrar un área. Se introducen por la presa diferencias de fase de mareas, lo que lleva a un diferencial de nivel de agua importante (por lo menos 2.3 metros) en aguas marinas ribereñas poco profundas con corrientes de mareas que oscilan paralelas a la costa, como las que encontramos en el Reino Unido, China y Corea Del Sur. Cada represa genera energía en una escala de 6 a 17 GW.








LA ENERGIA EOLICA

la energia eolica:La energía eólica es la energía obtenida a partir del viento, es decir, la energía cinética generada por efecto de las corrientes de aire, y que es convertida en otras formas útiles de energía para las actividades humanas.

En la actualidad, la energía eólica es utilizada principalmente para producir electricidad mediante aerogeneradores, conectados a las grandes redes de distribución de energía eléctrica. Los parques eólicos construidos en tierra suponen una fuente de energía cada vez más barata, competitiva o incluso más barata en muchas regiones que otras fuentes de energía convencionales.1 2 Pequeñas instalaciones eólicas pueden, por ejemplo, proporcionar electricidad en regiones remotas y aisladas que no tienen acceso a la red eléctrica, al igual que hace la energía solar fotovoltaica. Las compañías eléctricas distribuidoras adquieren cada vez en mayor medida el exceso de electricidad producido por pequeñas instalaciones eólicas domésticas.3 El auge de la energía eólica ha provocado también la planificación y construcción de parques eólicos marinos, situados cerca de las costas. La energía del viento es más estable y fuerte en el mar que en tierra, y los parques eólicos marinos tienen un impacto visual menor, pero los costes de construcción y mantenimiento de estos parques son considerablemente mayores.


A finales de 2013, la capacidad mundial instalada de energía eólica fue de 318 gigavatios.4 En 2011 la eólica generó alrededor del 3 % del consumo de electricidad mundial.5 Dinamarca genera más de un 25 % de su electricidad mediante energía eólica, y más de 80 países en todo el mundo la utilizan de forma creciente para proporcionar energía eléctrica en sus redes de distribución,6 aumentando su capacidad anualmente con tasas por encima del 20 %. En España la energía eólica produjo un 21,1 % del consumo eléctrico en 2013, convirtiéndose en la tecnología con mayor contribución a la cobertura de la demanda, por encima incluso de la energía nuclear.7

La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar fuentes de energía a base de combustibles fósiles, lo que la convierte en un tipo de energía verde. El impacto ambiental de este tipo de energía es además, generalmente, menos problemático que el de otras fuentes de energía.

La energía del viento es bastante estable y predecible a escala anual, aunque presenta significativas variaciones a escalas de tiempo menores. Al incrementarse la proporción de energía eólica producida en una determinada región o país, se hace imprescindible establecer una serie de mejoras en la red eléctrica local.8 9 Diversas técnicas de control energético, como una mayor capacidad de almacenamiento de energía, una distribución geográfica amplia de los aerogeneradores, la disponibilidad de fuentes de energía de respaldo, la posibilidad de exportar o importar energía a regiones vecinas o la reducción de la demanda cuando la producción eólica es menor, puden ayudar a mitigar en gran medida estos problemas.10 Adicionalmente, la predicción meteorológica permite a los gestores de la red eléctrica estar preparados frente a las previsibles variaciones en la producción eólica que puedan tener lugar a corto plazo.


miércoles, 28 de mayo de 2014

LA ENERGIA SOLAR

La energía solar : es una fuente de energía de origen renovable, obtenida a partir del aprovechamiento de la radiación electromagnética procedente del Sol.

La radiación solar que alcanza la Tierra ha sido aprovechada por el ser humano desde la Antigüedad, mediante diferentes tecnologías que han ido evolucionando con el tiempo desde su concepción. En la actualidad, el calor y la luz del Sol puede aprovecharse por medio de captadores como células fotovoltaicas, helióstatos o colectores térmicos, que pueden transformarla en energía eléctrica o térmica. Es una de las llamadas energías renovables o energías limpias, que pueden ayudar a resolver algunos de los problemas más urgentes que afronta la humanidad.1

La Tierra recibe 174 petavatios de radiación solar entrante (insolación) desde la capa más alta de la atmósfera.6 Aproximadamente el 30% regresa al espacio, mientras que las nubes, los océanos y las masas terrestres absorben la restante . El espectro electromagnético de la luz solar en la superficie terrestre lo ocupa principalmente la luz visible y los rangos de infrarrojos con una pequeña parte de radiación ultravioleta. 7

La potencia de la radiación varía según el momento del día, las condiciones atmosféricas que la amortiguan y la latitud. En condiciones de radiación aceptables, la potencia equivale aproximadamente a 1000 W/m² en la superficie terrestre. Esta potencia se denomina irradiancia. Nótese que en términos globales prácticamente toda la radiación recibida es reemitida al espacio (de lo contrario se produciría un calentamiento abrupto). Sin embargo, existe una diferencia notable entre la radiación recibida y la emitida.

La radiación es aprovechable en sus componentes directos y difusos, o en la suma de ambos. La radiación directa es la que llega directamente del foco solar, sin reflexiones o refracciones intermedias. La bóveda celeste diurna emite la radiación difusa debido a los múltiples fenómenos de reflexión y refracción solar en la atmósfera, en las nubes y el resto de elementos atmosféricos y terrestres. La radiación directa puede reflejarse y concentrarse para su utilización, mientras que no es posible concentrar la luz difusa que proviene de todas las direcciones.

La irradiancia directa normal (o perpendicular a los rayos solares) fuera de la atmósfera, recibe el nombre de constante solar y tiene un valor medio de 1366 W/m² (que corresponde a un valor máximo en el perihelio de 1395 W/m² y un valor mínimo en el afelio de 1308 W/m²).

La radiación absorbida por los océanos, las nubes, el aire y las masas de tierra incrementan la temperatura de éstas. El aire calentado es el que contiene agua evaporada que asciende de los océanos, y también en parte de los continentes, causando circulación atmosférica o convección. Cuando el aire asciende a las capas altas, donde la temperatura es baja, va disminuyendo su temperatura hasta que el vapor de agua se condensa formando nubes. El calor latente de la condensación del agua amplifica la convección, produciendo fenómenos como el viento, borrascas y anticiclones. 8 La energía solar absorbida por los océanos y masas terrestres mantiene la superficie a 14 °C.9 Para la fotosíntesis de las plantas verdes la energía solar se convierte en energía química, que produce alimento, madera y biomasa, de la cual derivan también los combustibles fósiles.10



Flujo Solar Anual y Consumo de energía humano
Solar
3.850.000 EJ11
Energía eólica
2.250 EJ12
Biomasa
3.000 EJ13
Uso energía primario (2005)
487 EJ14
Electricidad (2005)
56,7 EJ15

tecnologias y usos de la energia solar: 
Energía solar activa: para uso de baja temperatura (entre 35 °C y 60 °C), se utiliza en casas; de media temperatura, alcanza los 300 °C; y de alta temperatura, llega a alcanzar los 2000 °C. Esta última, se consigue al incidir los rayos solares en espejos, que van dirigidos a un reflector que lleva a los rayos a un punto concreto. También puede ser por centrales de torre y por espejos parabólicos.
Energía solar pasiva: Aprovecha el calor del sol sin necesidad de mecanismos o sistemas mecánicos.
Energía solar térmica: Es usada para producir agua caliente de baja temperatura para uso sanitario y calefacción.
Energía solar fotovoltaica: Es usada para producir electricidad mediante placas de semiconductores que se alteran con la radiación solar.
Energía solar termoeléctrica: Es usada para producir electricidad con un ciclo termodinámico convencional a partir de un fluido calentado a alta temperatura (aceite térmico).
Energía solar híbrida: Combina la energía solar con otra energía. Según la energía con la que se combine es una hibridación:
Renovable: biomasa, energía eólica.18
No renovable: Combustible fósil.
Energía eólico solar: Funciona con el aire calentado por el sol, que sube por una chimenea donde están los generadores.
Otros usos de la energía solar y ejemplos más prácticos de sus aplicaciones:

Huerta solar.
Central térmica solar, como:
la que está en funcionamiento desde el año 2007 en Sanlúcar la Mayor (Sevilla), de 11 MW de potencia que entregará un total de 24 GWh al año.
y la de Llanos de Calahorra, cerca de Guadix, de 50 MW de potencia. En proyecto Andasol I y II.
Potabilización de agua.
Cocina solar.
Destilación.
Evaporación.
Fotosíntesis.
Secado.
Arquitectura sostenible.
Cubierta solar.
Acondicionamiento y ahorro de energía en edificaciones.
Calentamiento de agua.
Calefacción doméstica.
Iluminación.
Refrigeración.
Aire acondicionado.
Energía para pequeños electrodomésticos.

Energía solar activa: para uso de baja temperatura (entre 35 °C y 60 °C), se utiliza en casas; de media temperatura, alcanza los 300 °C; y de alta temperatura, llega a alcanzar los 2000 °C. Esta última, se consigue al incidir los rayos solares en espejos, que van dirigidos a un reflector que lleva a los rayos a un punto concreto. También puede ser por centrales de torre y por espejos parabólicos.
Energía solar pasiva: Aprovecha el calor del sol sin necesidad de mecanismos o sistemas mecánicos.
Energía solar térmica: Es usada para producir agua caliente de baja temperatura para uso sanitario y calefacción.
Energía solar fotovoltaica: Es usada para producir electricidad mediante placas de semiconductores que se alteran con la radiación solar.
Energía solar termoeléctrica: Es usada para producir electricidad con un ciclo termodinámico convencional a partir de un fluido calentado a alta temperatura (aceite térmico).
Energía solar híbrida: Combina la energía solar con otra energía. Según la energía con la que se combine es una hibridación:
Renovable: biomasa, energía eólica.18
No renovable: Combustible fósil.
Energía eólico solar: Funciona con el aire calentado por el sol, que sube por una chimenea donde están los generadores.
Otros usos de la energía solar y ejemplos más prácticos de sus aplicaciones:

Huerta solar.
Central térmica solar, como:
la que está en funcionamiento desde el año 2007 en Sanlúcar la Mayor (Sevilla), de 11 MW de potencia que entregará un total de 24 GWh al año.
y la de Llanos de Calahorra, cerca de Guadix, de 50 MW de potencia. En proyecto Andasol I y II.
Potabilización de agua.
Cocina solar.
Destilación.
Evaporación.
Fotosíntesis.
Secado.
Arquitectura sostenible.
Cubierta solar.
Acondicionamiento y ahorro de energía en edificaciones.
Calentamiento de agua.
Calefacción doméstica.
Iluminación.
Refrigeración.
Aire acondicionado.
Energía para pequeños electrodomésticos.



LA TECNOLOGÍA SOLAR pasiva es el conjunto de técnicas dirigidas al aprovechamiento de la energía solar de forma directa, sin transformarla en otro tipo de energía, para su utilización inmediata o para su almacenamiento sin la necesidad de sistemas mecánicos ni aporte externo de energía, aunque puede ser complementada por ellos, por ejemplo para su regulación.

La tecnología solar pasiva incluye sistemas con ganancia directa e indirecta para el calentamiento de espacios, sistemas de calentamiento de agua basados en termosifón, el uso de masa térmica y de materiales con cambio de fase para suavizar las oscilaciones de la temperatura del aire, cocinas solares, chimeneas solares para mejorar la ventilación natural y el propio abrigo de la tierra.

La arquitectura bioclimática es la aplicación de este principio al diseño de edificaciones. La energía no se aprovecha por medio de captadores industrializados, sino que son los propios elementos constructivos los que absorben la energía de día y la redistribuyen por la noche.






LA ENERGÍA SOLAR TÉRMICA (o energía termosolar) consiste en el aprovechamiento de la energía del Sol para producir calor que puede aprovecharse para cocinar alimentos o para la producción de agua caliente destinada al consumo de agua doméstico, ya sea agua caliente sanitaria, calefacción, o para producción de energía mecánica y, a partir de ella, de energía eléctrica. Adicionalmente puede emplearse para alimentar una máquina de refrigeración por absorción, que emplea calor en lugar de electricidad para producir frío con el que se puede acondicionar el aire de los locales.




ENERGÍA SOLAR TÉRMICA DE BAJA TEMPERATURA

Los colectores de energía solar térmica están clasificados como colectores de baja, media y alta temperatura:

Colectores de baja temperatura. Proveen calor útil a temperaturas menores de 65 °C mediante absorbedores metálicos o no metálicos para aplicaciones tales como calentamiento de piscinas, calentamiento doméstico de agua para baño y, en general, para todas aquellas actividades industriales en las que el calor de proceso no es mayor de 60 °C, por ejemplo la pasteurización, el lavado textil, etc.
Colectores de temperatura media. Son los dispositivos que concentran la radiación solar para entregar calor útil a mayor temperatura, usualmente entre los 100 y 300 °C. En esta categoría se tiene a los concentradores estacionarios y a los canales parabólicos, todos ellos efectúan la concentración mediante espejos dirigidos hacia un receptor de menor tamaño. Tienen el inconveniente de trabajar solamente con la componente directa de la radiación solar por lo que su utilización queda restringida a zonas de alta insolación.
Colectores de alta temperatura. Existen en tres tipos diferentes: los colectores de plato parabólico, la nueva generación de canal parabólico y los sistemas de torre central. Operan a temperaturas superiores a los 500 °C y se usan para generar electricidad (electricidad termosolar) y transmitirla a la red eléctrica; en algunos países estos sistemas son operados por productores independientes y se instalan en regiones donde las posibilidades de días nublados son remotas o escasas.

La energía solar térmica (o energía termosolar) consiste en el aprovechamiento de la energía del Sol para producir calor que puede aprovecharse para cocinar alimentos o para la producción de agua caliente destinada al consumo de agua doméstico, ya sea agua caliente sanitaria, calefacción, o para producción de energía mecánica y, a partir de ella, de energía eléctrica. Adicionalmente puede emplearse para alimentar una máquina de refrigeración por absorción, que emplea calor en lugar de electricidad para producir frío con el que se puede acondicionar el aire de los locales.

Los colectores de energía solar térmica están clasificados como colectores de baja, media y alta temperatura:

Colectores de baja temperatura. Proveen calor útil a temperaturas menores de 65 °C mediante absorbedores metálicos o no metálicos para aplicaciones tales como calentamiento de piscinas, calentamiento doméstico de agua para baño y, en general, para todas aquellas actividades industriales en las que el calor de proceso no es mayor de 60 °C, por ejemplo la pasteurización, el lavado textil, etc.
Colectores de temperatura media. Son los dispositivos que concentran la radiación solar para entregar calor útil a mayor temperatura, usualmente entre los 100 y 300 °C. En esta categoría se tiene a los concentradores estacionarios y a los canales parabólicos, todos ellos efectúan la concentración mediante espejos dirigidos hacia un receptor de menor tamaño. Tienen el inconveniente de trabajar solamente con la componente directa de la radiación solar por lo que su utilización queda restringida a zonas de alta insolación.
Colectores de alta temperatura. Existen en tres tipos diferentes: los colectores de plato parabólico, la nueva generación de canal parabólico y los sistemas de torre central. Operan a temperaturas superiores a los 500 °C y se usan para generar electricidad (electricidad termosolar) y transmitirla a la red eléctrica; en algunos países estos sistemas son operados por productores independientes y se instalan en regiones donde las posibilidades de días nublados son remotas o escasas.